BRIEF CONTENTS

PART 1. Relativity

CHAPTER 1 The Space and Time of Relativity .. 2
CHAPTER 2 Relativistic Mechanics ... 46

PART 2. Quantum Mechanics

CHAPTER 3 Atoms ... 86
CHAPTER 4 Quantization of Light ... 125
CHAPTER 5 Quantization of Atomic Energy Levels 144
CHAPTER 6 Matter Waves ... 168
CHAPTER 7 The Schrödinger Equation in One Dimension 203
CHAPTER 8 The Three-Dimensional Schrödinger Equation 248
CHAPTER 9 Electron Spin ... 287
CHAPTER 10 Multielectron Atoms; the Pauli Principle and Periodic Table 307
CHAPTER 11 Atomic Transitions and Radiation 334

PART 3. Systems with Two or More Atoms

CHAPTER 12 Molecules .. 368
CHAPTER 13 Solids – Theory ... 409
CHAPTER 14 Solids – Applications .. 454
CHAPTER 15 Statistical Mechanics ... 495

PART 4. Subatomic Physics

CHAPTER 16 The Structure of Atomic Nuclei 534
CHAPTER 17 Radioactivity and Nuclear Reactions 568
CHAPTER 18 Elementary Particles ... 628

APPENDIX A Physical Constants ... 678
APPENDIX B Useful Mathematical Relations 681
APPENDIX C Alphabetical Lists of the Elements 684
APPENDIX D Atomic and Nuclear Data ... 686

Suggestions for Further Reading ... 697
Picture Credits and References ... 699
Answers to Odd-Numbered Problems ... 700
Index ... 710
CONTENTS

Preface xiii
To the Student xvii

PART 1. Relativity

CHAPTER 1. The Space and Time of Relativity 2
 1.1 Relativity 2
 1.2 The Relativity of Orientation and Origin 3
 1.3 Moving Reference Frames 4
 1.4 Classical Relativity and the Speed of Light 7
 1.5 The Michelson–Morley Experiment* 10
 1.6 The Postulates of Relativity 12
 1.7 Measurement of Time 14
 1.8 The Relativity of Time; Time Dilation 15
 1.9 Evidence for Time Dilation 19
 1.10 Length Contraction 21
 1.11 The Lorentz Transformation 25
 1.12 Applications of the Lorentz Transformation 28
 1.13 The Velocity–Addition Formula 32
 1.14 The Doppler Effect* 34
 Checklist for Chapter 1 39
 Problems for Chapter 1 40

CHAPTER 2. Relativistic Mechanics 46
 2.1 Introduction 46
 2.2 Mass in Relativity 46
 2.3 Relativistic Momentum 47
 2.4 Relativistic Energy 51
 2.5 Two Useful Relations 56
 2.6 Conversion of Mass to Energy 59
 2.7 Force in Relativity 64
 2.8 Massless Particles 67
 2.9 When Is Nonrelativistic Mechanics Good Enough? 70
 2.10 General Relativity* 71
 2.11 The Global Positioning System: An Application of Relativity* 78
 Checklist for Chapter 2 79
 Problems for Chapter 2 80

PART 2. Quantum Mechanics

CHAPTER 3. Atoms 86
 3.1 Introduction 86
 3.2 Elements, Atoms, and Molecules 86

*Sections marked with a star can be omitted without serious loss of continuity.
CHAPTER 10. Multielectron Atoms; the Pauli Principle and Periodic Table 307

10.1 Introduction 307
10.2 The Independent-Particle Approximation 308
10.3 The IPA Energy Levels 310
10.4 The Pauli Exclusion Principle 312
10.5 Fermions and Bosons; the Origin of the Pauli Principle* 314
10.6 Ground States of the First Few Elements 316
10.7 The Remaining Elements 320
10.8 The Periodic Table 324
10.9 Excited States of Atoms* 327
Checklist for Chapter 10 330
Problems for Chapter 10 331

CHAPTER 11. Atomic Transitions and Radiation 334

11.1 Introduction 334
11.2 Radiation by Classical Charges 334
11.3 Stationary States and Transitions 337
11.4 More Quantum Formalism* 338
11.5 Transitions; Time-Dependent Perturbation Theory* 343
11.6 A Brief Review 349
11.7 Spontaneous Emission 349
11.8 Atomic Selection Rules 350
11.9 Lasers 352
11.10 Further Properties of Lasers* 357
Checklist for Chapter 11 362
Problems for Chapter 11 363

PART 3. Systems with Two or More Atoms

CHAPTER 12. Molecules 368

12.1 Introduction 368
12.2 Overview of Molecular Properties 370
12.3 The Ionic Bond 375
12.4 The Covalent Bond 379
12.5 Directional Properties of Covalent Bonds* 387
12.6 Excited States of Molecules* 389
12.7 Molecular Spectra* 397
Checklist for Chapter 12 403
Problems for Chapter 12 403

13.1 Introduction 409
13.2 Bonding of Solids 411
13.3 Crystals and Noncrystals 415
13.4 Energy Levels of Electrons in a Solid; Bands 420
13.5 Conductors and Insulators — A Qualitative View 422
13.6 The Drude Model of Conductivity 425
13.7 Electron Collisions in Metals 429
13.8 The Fermi Speed 432
13.9 Degeneracy Pressure 436
13.10 White Dwarfs, Neutron Stars, and Black Holes 438
13.11 Classical and Quantum Gases 440
13.12 Bose–Einstein Condensation 445
Checklist for Chapter 13 448
Problems for Chapter 13 449

CHAPTER 14. Solids – Applications 454
14.1 Introduction 454
14.2 Semiconductors 455
14.3 The pn Junction Diode 460
14.4 The Transistor 463
14.5 Further Semiconductor Applications 466
14.6 Integrated Circuits 470
14.7 The Scanning Tunneling Microscope 473
14.8 Superconductivity 479
14.9 The Digital Information Age 485
Checklist for Chapter 14 489
Problems for Chapter 14 489

CHAPTER 15. Statistical Mechanics 495
15.1 Introduction 495
15.2 Temperature 496
15.3 The Boltzmann Factor 499
15.4 Counting Microstates: The Equal-Probability Hypothesis 503
15.5 The Origin of the Boltzmann Relation 508
15.6 Entropy and the Second Law of Thermodynamics 511
15.7 The Quantum Ideal Gas — A Many-Particle System 513
15.8 Energy and Speed Distributions in an Ideal Gas 516
15.9 Heat Capacities 521
Checklist for Chapter 15 526
Problems for Chapter 15 527

PART 4. Subatomic Physics

CHAPTER 16. The Structure of Atomic Nuclei 534
16.1 Introduction 534
16.2 Nuclear Properties 535
16.3 The Nuclear Force 539
16.4 Electrons versus Neutrons as Nuclear Constituents 541
16.5 The IPA Potential Energy for Nucleons 544
16.6 The Pauli Principle and the Symmetry Effect 546
16.7 The Semiempirical Binding-Energy Formula 548
16.8 The Shell Model 553
16.9 Mass Spectrometers 560
Checklist for Chapter 16 562
Problems for Chapter 16 563